RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FIFTH SEMESTER EXAMINATION, DECEMBER 2012

THIRD YEAR

Date : 17/12/2012 MATHEMATICS (Honours)

Answer any five questions:

Time: 11 am - 3 pm Paper: V Full Marks: 100

Use separate answer-book for each group

Group-A

5**x**10=50

Ans	swer any five questions:	50		
1.	a) Let H be a subgroup of a group G such that $[G : H] = 2$. Prove that H is normal in G.	2		
	b) Let H be a subgroup of a group G. If $x^2 \in H \forall x \in G$, prove that H is a normal subgroup of G and G/H			
	is commutative.	3		
	c) Let G be a group. If $G/Z(G)$ is cyclic, prove that G is abelian. Use it to show that the centre of S ₃ is			
	trivial.	5		
2	a) State and prove sylow's First Theorem.	6		
	b) Prove that (R^+, \bullet) is the only subgroup of (R^*, \bullet) of finite index, where $R^*=R-\{0\}$ and	4		
	$R^+ = \{ x \in R : x > 0 \} .$	4		
3.	a) Prove that the group $\frac{4Z}{12Z}$ is isomorphic to Z_3 .	3		
	b) Show that a group G of order 231 contains a Sylow 11-subgroup which is is normal in G.c) Show that a group of order 42 cannot be simple.d) Is every abelian group of order 6 cyclic? Justify your answer.	2 3 2		
4.	 a) Let H and K be two finite cyclic groups of order m and n respectively. Prove that the direct product H x K is a cyclic group if and only if gcd (m, n)=1. b) If G is a non-commutative group of order p³, where p is a prime integer, then prove that Z(G) =p. 			
5.	 a) Show that if G is a finite p-group with G >1 then Z(G) is non-trivial. b) Show that there does not exist an onto homomorphism from the Klein's 4-group to the group (Z₄,+). c) Prove that every group of order 14 contains only one normal subgroup of order 7. 			
6.	a) Let G be a commutative group of order n. If $gcd(m,n)=1$, prove that the mapping $\phi: G \to G$ defined			
	by $\phi(x) = x^m, x \in G$ is an automorphism.	5		
	b) Show that no group of order 56 is simple.	5		
7.	a) Prove that any integral domain can be embedded in a field.b) Show that the identity automorphism is the only automorphism of the field R of all real numbers.			
8.	a) Prove that the rings $Z[\sqrt{3}]$ and $Z[\sqrt{5}]$ are not isomorphic.	3		
	b) Show that the function $f: Z_6 \to Z_{10}$ defined by $f([a]) = 5[a]$ for all $a \in Z_6$ is a ring homomorphism of Z_6			
	into Z_{10} .	3		
	c) Let R be a commutative ring with identity and A, B be two distinct maximal ideals of R. Show that $AB=A \cap B$.	4		
	Group-B			
	Answer any six questions from question no. 9 to question no. 17			
9.	Show that the error in approximating $f(x)$ by the interpolation polynomial using distinct interpolating			
,	points x_0, x_1, \dots, x_n is of the form $(x-x_0)(x-x_1)\cdots(x-x_n)\frac{f^{n+1}(\xi)}{[n+1]}$, where			
	The state of the s	5		
	$\min\{x, x_0, x_1, \dots x_n\} < \xi < \max\{x, x_0, x_1, \dots, x_n\}.$	J		

	10.	b) Find t	the polynomial of degree 2 or less, such that $f(0)=1$, $f(1)=3$, $f(3)=55$ using the Newton ed difference interpolation.	3
0.00	11.	x: 5 y: 17.	75808 17.86316 17.96702 18.06969 18.17121	2
			oute ³ √5860 by starlings formula. is the speciality of Hermit interpolating polynomial?	2
	12.	a) From	the following table find the value of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the pt. x = 1.5.	
		x: 1.5 y: 3.3 b) Show	75 7.000 13.625 24.000 38.875 59.000	3 2
	13.		ribe Newton-Raphson method for computing a simple root of $f(x) = 0$. Give its geometrical pretation.	-1
	14.		ribe Gaussian elimination method for numerical solution of system of linear equation. What is the sity of the pivoting Process involved in it?	-
	15.		the value of $y(0.4)$ using Runge-Kulta method of fourth order with $h=0.2$ given that $\sqrt{x^2 + y}$, $y(0) = 0.8$ correct up to four decimal places.	5
	16.	Descr	ribe the power method to calculate numerically greatest eigen value of a real square matrix of order n.	5
	17.	Use P	Picard's method to compute $y(0.1)$ from the differential equation $\frac{dy}{dx} = x + y$; $y = 1$, when $x = 0$.	5
,			Answer any four questions from question no. 18 to question no. 23	
	18.	prime	a mamber.	2
		b) If g is	s the greatest common divisor of integers b and c, then prove that $g=bx_0+cy_0$ where $x_0, y_0 \in \mathbb{Z}$.	3
	19.	a) Show b) Prove	that if p and q are distinct primes, area p	3 2
•	20.	a) Find	all solutions of the system	$\widehat{}$
			$x \equiv 2 \pmod{4}$	2
			$x \equiv 3 \pmod{5}$ $x \equiv 1 \pmod{7}$	2
		b) State	and prove Euclid's theorem.	3
	21.	a) Show	with that n is a perfect square if and only if the number of positive divisors of n is odd. The Mobius μ -function and state the Mobius inversion law.	3
	22.	a) Find	the remainder when 15 is divided by 17	1
	STORT OF THE		that there are infinitely many primes of the form $4n - 1$ where n is some positive integer.	4
	23.		the positive integral solutions of the equation $4x+6y=8$.	3
		b) If p i	is prime and k is a positive integer then prove that $\phi(p^k) = p^k \left(1 - \frac{1}{p}\right)$ where ϕ is the Euler's ϕ	Ď
		funct	ion.	2